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A straight line is the next simplest geometric object after a point. All physical exam-
ples of a straight line are finite line segments with well-defined endpoints and length.
However, the mathematical or geometric line may be unbounded or infinite, or it may
be a semi-infinite half-line or ray. This chapter reviews the mathematical description of
lines in two and three dimensions, including linear parametric equations. Tt describes
how to compute points on a line, geometric relationships between points and lines, line
intersections, and translating and rotating lines.

LINES

9.1 Lines in the Plane

The slope-intercept form is algebraically the simplest way to describe a straight -
line that lies in the x, y plane (Figure 9.1). If we know the slope m of a line and where it
intersects the y axis, at y = b, then we write the equation of the line as

y=mx+b (.])
The slope m is the ratio of the change in y to the change in x between any two
points on the line, If the coordinates of these two points are xy, 1 and x,, 1p, then the

slope of the line that passes through them is

Xo—xn

m=
2—h

02

The point-slope form is a variation of the slope intercept form (Figure 9.2). If we
know the slope m and a peint x;, 1 through which the line passes, then

Y — 1= nm{x — x1) 93)

If we use the point x; =0, ¥4 = b, then Equation 9.3 simplifies to Equation 9.1.
The two-point form derives from the proposition that any two distinct pointsin
the plane define a line that passes through both of them (Figure 9.3). Thus, given two,

174



Lines 175

o

m m
//// //Q;

Figure 9.1 Slope-intercept form. Figure 9.2 Point-slope form,
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Figure 9.3 Two-point form. Figure 9.4 Intercept form.

points x1, 11 and xz, 2, we substitute Equation 9.2 into Equation 9.3 for m, and rearrange
the terms to obtain

Yo _ o ©.4)

X —X X — Xy

Using Equation 9.4 for the two points (x1, 1) = (2,0} and (x3, o) = ©. b),
produces

¥y _
+p=1 (9.5)

This is the intercept form, aptly named, since it defines a line by its points of intersection
with the coordinate axes (Figure 9.4).

Equations 9.1 and 9.3 are explicit equations, where x is the independent variable
and y is the dependent variable. That is, we choose arbitrary values for x and compute
the corresponding values of y. The value of y depends on the value of x. Equations 9.4
and 9.5 are implicit equations, where we can choose either x or y to be the independent
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variable. However, we can express x and y separately in terms of a third variable, say 4,
Using this approach we need two equations to define a line in the plane. They are
Xx=au+b
{9.6)
y=cu+d
These are parametric equations, and u is the parametric variable . Ordinarily, we
treat # as the independent variable and x and vy as dependent variables.
The parametric equations of a line in the plane work like this: Let’s say we want
to define a line that passes through x;, 1 and x», 1 and that ¥ = 0 at the first point, u = 1
at the second point. This is enough information to write two sets of two simultaneous
equations to determine the constant coefficients a, b, ¢, and d. In this case, for ¥ = 0in
Equations 9.6, we have
xi==5b b= Xy

or o)
n=d d=uy

and foru =1

a+b=ux
: (9.8)
c+d=mp
We find b and 4 directly, from Equations 9.7, and substitute appropriately into
Equations 9.8 to find # and ¢. Thus

=a-+x =X —X
2 ' or 2o (99)

e=c+th c=kr-—hn

Now we know a, b, ¢, and 4 for the line passing through the two given points,

and we rewrite Equations 9.6 to obtain the parametric equations of this line:
X = (X —x)u+x
y=0z—ypu+n

To find a set of points on this line, we substitute a set of # values into Equa-
tions 9.10. Each # value determines a coordinate pair of x, y values. This way of defining
straight lines is often used in computer graphics and geometric modeling, because it
allows a sequence of points on the line to be computed and plotted on a display screen.
These are linear parametric equations . We use higher-order parametric equations to define
curves and surfaces. Of course, the extension to three dimensions is abvious.

Because parametric equations allow us to separate the dependent x and ¥
coordinate values of points along a line, the method readily lends itself to vector geometry
{see Chapter 1).

We can express the angle 8 between two lines in the plane as a function of their
two respective slopes, m; and m, (Figure 9.5);

(9.10)

tanf = 2 (9.11)

The derivation of Equation 9.1 is a simple exercise in algebra and trigonometry.
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Figure 9.5 Angle between fwo lines. Figure 9.6 Halfspaces defined by the
implicit equation of a line,

If two lines are parallel, then
y = my (9.12)
If they are perpendicular, then
mynt = =1 9.13)

A halfspace is defined by the implicit equation of a line (Figure 9.6). For example,
given the explicit equation of the line y = x + 2, the corresponding implicit equation
is f(x, y) = x — y + 2. If for any point x, y, f(x, y) = 0, then the point lies on the line.
¥ f(x, 1) > 0 or f(x, y) < 0, the point lies on one side or the other of the line. We say
that f(x, v) > 0 and f(x, ¥) < 0 define two halfspaces, and fix, y) = 0 defines their
common boundary (Chapter 7).

9.2 Lines in Space

Three linear parametric equations, one for each coordinate, define a straight
line in three-dimensional space:

X =a U+ by
z=a.u+b,

where x, y, and z are the dependent variables. Equations 9.14 generate a set of coordi-
nates for each value of the parametric variable u. The coefficients a,, 4y, 4, by, by, and
b, are unique and constant for any given line, their values depending on the endpoint
coordinates.

We can think of this set of equations as a point-generating machine. The inputis
values of #. The machine produces coordinates of points on a line as output (Figure 9.7).
It produces a bounded line segment if we limit the range of values we assign to the
parametric variable. In computer graphics and geometric modeling, u usually takes
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u=05

x=-3u+4
y=4u+2

z=6u—2 Figure 9.7 A point-generating machine,

x=25
y=4.0
z=1.0

values in the closed interval from 0 to 1. This is called the unit inferval, and is expressed as
ueld 1] {9.15)

The interval limits determine the nature of the line, making it a line segment,
a semi-infinite line (a ray}, or an infinite line. If we insert values of ¥ = O and # = 1
into the point-generating machine of Figure 9.7, we obtain the endpoint coordinates
po = 4,2 -2) and p; = (1, 6, 4). To characterize a line segment by the coordinates
of its endpoints, we must modify Equations 9.14, identifying the endpoints of the line
segment, as above, by pg and p; (Figure 9.8).

Substituting # = 0 into Equations 9.14 yields

b;t = Xp
by =w (9.16).
bz = Zjy

P1=(X1,)’h Zl)

Figure 9.8 Line segment in space.

/]
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where X, 1%, and zg are the coordinates at the # = 0 endpoint of the line. Atu =1,

X1 =1y + Xy
h=dy+ 8.17)
Zy=a; + Zp

or
dy = X1~ Xo
ay =y -1 (9.18)
A, =21 —2Zp

Substituting the results of Equations 9.16 and 9.18 into Equations 9.14 yields

X = (x1 — xp)u+ X0
y=h—yu+mw uel01] (9.19)
z=(z1 —zo)i + 2o

This is a very useful set of equations. It means that if we know the endpoint
coordinates of a line segment, we can immediately write a parametric equation for it and
find any intermediate points on it. The parametric variable conveniently ranges through
the closed interval from zero to one.

To find the length of a line segment we simply apply the Pythagorean theorem
~ to the endpoint coordinate differences:

L=+ —x0)?+ (1 — w00t + (1 — 20)? (9.20)

There are three numbers associated with every line that uniquely describe
its angular orientation in space. These numbers are called direction cosines (or direction
numbers). We denote them as d,, dy, and d,. The computations are simple:

_ %)
de = 3
dy = 1 — o) (9.21)
L
d, = (Z1 ;ZD)

The geometry of the direction cosine computation for d, is shown in Figure 9.9,
- and also for d, and d,. The edges of the auxiliary rectangular solid are parallel to the
coordinate axes, and pg, A and p; define a right angle at A. From this figure we see that

dy = cosé (9.22)

The sum of the squares of the direction cosines must equal one. Therefore, any
~ two of them are sufficient to determine the third:

ai+d;+d;=1 (9.23)
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Figure 9.9 Geomeltry for the computation of a
direction cosine,
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However, direction cosines alone do not completely specify a line, because they
tell us nothing about the location of the line. For example, any two parallel lines in space
have the same direction cosines. But direction cosines are a good way to test whether
they are parallel.

9.3 Computing Points on a Line

The parametric equations of a line are particularly useful for computing points
on that line. An important set of points on a line frequently used in geometric modeling
and computer graphics is points at equal intervals along the line. There are two ways
to compute the coordinates for these points, one considerably faster and more efficient
than the other. We will look at both methods.

To find the coordinates of points at # equal intervals on a given line, we use py
and p1 and then compute the remaining # — 1 intermediate points. Figure 9,10 shows a
line with eight equal intervals.

The first method uses Equation 9.19, for each of the n — 1 points. There aren-1
values of the parametric variable, given by
3 n-2 n—-1

Frary r

n n n

N (9.24)
H n

P

Figure 9.10 Points at equal intervals along a line segment.

Po
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and requiring n — 1 divisions to compute. For the x coordinates there are n — 1 mul-
tiplications and # additions (including finding x; — xp). The computation totals for all
coordinates are 3n additions, 3(n — 1) multiplications, and n — 1 divisions.

A second approach uses fewer computations. First, we notice that « always
changes by a constant amount Au, where

1
Au = " (9.25)
Next, we observe that for any x;
x; = (X1 — Xp)ti + Xp {9.26)
and for x5
Xip1 = (X1 — Xp)Ui41 + Xp (9.27)
However, since u;,1 = #; + Au, we can rewrite Equation 9.27 as
X = (¥ — x0) 0t + Au) + % (9.28)
or
X1 = (X1 — Xt + {x1 — Xp)Au + xp {9.29)
But (x; — x9)t; + %o = x;, s0 we can simplify Equation 9.29:
X1 = X + (X1 — Xp)Au 9.30
and since {(x; — xp) Au is a constant, we let Ax = (x; — xp)Au. Therefore,
iy = x + Ax (9.31)

This tells us that we find each successive x coordinate by adding a constant to
the previous value. This derivation applies to the y and z coordinates as well. Now let's
count the computations: To compute Au requires one division. To compute Ax requires
one addition and one multiplication. For the x coordinates there are # — 1 additions. The
totals for all # points are 3n additions, 3 multiplications, and one division. This process
is called the forward difference method. It is commonly used to compute points on curves
and surfaces, too.

9.4 Point and Line Relationships

Any point q is either on or off a given line (Figure 9.11}. If it is on the line, it
is either between the endpoints, q;, on the backward extension of the line, qz, or on the
forward extension, qs.
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Figure 9.11 Point and Iine relationships.

We can write Equations 9.19 in terms of # to obtain

X — Xp
Uy =
X1 — X0
y—Ww
My = S 932
= s 932)
Z— 2p
U, =
Z1 — Zp

Given the coordinates of any point q = (x, ¥, z), we compute #y, u,, and 4, lf
and only if u, = uy = u, is point q on the line. Otherwise, it is off the line. We should
allow some small but finite deviation. For example, |u, — u,| = &, where ¢ < 1. If point
q is on the line, then the value of # indicates its precise position.

In a plane, we can determine the position of a point relative to a line by solving
the parametric equations to obtain the implicit equation

F& 9 = (& — 20 — 10) — (¥ — wo){x1 — xp) (9.33)

Then, for a reference point pr not on the line, we compute f(xg, yr}. For an
arbitrary test point pr we compute f(xr, yr). If f{xr, yr) = 0, then pr is on the line.
If f(xg, yr) and f(x7, y7) have the same sign, thatis, f(xr, yr} > 0 and f(xz, yr) > 0,
or f(xr, yr) < D and f(xg, yr) < O, then pr and pg are on the same side of the line.
Otherwise they are on opposite sides (Figure 9.12). One way to choose a reference point
istoletpr = (xp+1, yo); then pgr is to the right of the line. If ; = 1, the line is horizontal,
and we can then let pr = (%o, wo + 1), placing pr above the line.

P,
P:

Figure 9.12 Position of a point relative to
* a line.

P,
P
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9.5 Intersection of Lines

If two lines intersect, they have a common point, the point of intersection. There
are two problems of interest: first, the general problem of determining if twolines in space
intersect (Figure 9.13a); second, the special case of finding the intersection of a line in the
plane with a second line in the plane that is either horizontal or vertical (Figure 9.13b).

For the general problem, two lines, a2 and b, intersect if there is a point (the
point of intersection) such that

Xg = Xp
=W (9.34)
Zq = Zp

It follows from Equations 9,19 that

(X1, — Xoa)tg + Xop = (X1p — XopIts + Xop
(e — Yoa)Ma + You = (V1p — Yob )t + Yob (9.35)
(Z1g = Zoa YU + Zoa = (Z1p — Zop)Up + Zob

where xg, and o, are the coordinates of the endpoint # = 0 of line a, xj, and 1, are the
coordinates of the endpoint u = 1 of line 4, and similarly for line &,

We can use any two of the three equations to solve for u, and u,. Then we
substitute 1, and u; into the remaining equation to verify the solution. If the solution
is verified, the lines intersect. Finally, both #, and #, must be in the interval 0 to 1 for a
valid intersection.

For the sperial problem, given a line in the x, y plane, determine if it intersects
with either of the vertical lines Wg, W, (right or left), or with either of the horizontal
lines Wy, Wp (top or bottom) (Figure 9.14). (Note that this nomenclature anticipates
the window boundary coordinates of computer graphic displays: Chapter 14.) Wr is a

y d

/I—> X — Wy  Figure 9.13 Intersection of lines.
Y W,
(a) I )
X

Z

(b)
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Figure 9.14 Intersections with horizontal and
vertical lines.

W, We

vertical line whose equation is x = Wg. Wr is a horizontal line whose equationis y = Wr. .
If x = Wg intersects the arbitrary line, then

= PR % (9.36)
X1 — Xp j

If Equation 9.36 produces a value of # in the unit interval, we use it to compute
the y coordinate of the point of intersection. If the arbitrary line itself is vertical, thenit -
cannot intersect the line x = Wy (for a vertical line xp = x; and, therefore, x; — x5 = {).
We use a similar procedure when computing line intersections with Wy, Wr, and Wp.

9.6 Translating and Rotating Lines

We can translate a line by translating its end-point coordinates (Figure 9.15).
The end-point translations must be identical, otherwise the transformed line will have -
a different length or angular orientation, or both.

In the plane, we have

x,;:xg—lrxr xi=x1+xq—
W=Ww+yr n=n+h

The translated line is always parallel to its original position, and its length does
not change. In fact, all points on the line are translated equally. That is why this is called a
rigid body translation. The generalization to three or more dimensions is straightforward.
The simplest rotation of a line in two dimensions is about the origin
{(Figure 9.16). To do this we rotate both endpoints pg and p; through an angle 8 about
the origin. Then we find the coordinates of the transformed endpoints p; and pj by

(9.37)
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b, y
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Figure 9.15 Transiating a line. Figure 9.16 Rotation of a line about a
point in the plane.
applying Equation 8.13:

xp=x9cosf — ysin®  x{ =x;cosf — 1 sind 9.38)
¥y = Xo siné + 1y cos 6 ¥ = X1 5in6 + 1 cosd '

This equation produces a rigid-body rotation of the line. Again, a rotation in three di-
mensions is a direct extension of this (see Section 3.5).

Exercises

9.1 Prove that the sum of the squares of the direction cosines of a line is equal to one.

9.2 Compute the length and direction cosines for each of the following line segments,
defined by their endpoints:
a po=1(37,9102), p; = (0.9, -2.6,2.6)
b. po = 2.1, —6.4,0), pr = (3.3,0.7, —5.1)
¢ po=(103,42,37), py =(6.0,10.3,9.2)
d. po=(53-7914), pr =(0,4.1,07)

9.3 Write the parametric equations for each line given in Exercise 9.2,

94 How does reversing the order of the end points defining a line segment affect its
length and direction cosines?

9.5 Compute the n—1 intermediate points on each of the following line segments, defined
by their endpoints:
apo=739pr=(730),forn=3
b.po=(—-460,p1 =211, -7), forn=4
¢ po=0©06),pr=(61-5) forn=4

9.6 Given the line segment defined by its endpoints pp = (6, 4, 8) and py = (8,8, 12),
write the parametric equations of this line segment and determine for each of the
following points if it is on or off the line segment.
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a.q: =408 d. qs = (10,4,2)
b. q2 = (12, —8, 20) e. qs = (10,12, 16)
C. qas= (7, 6, 10)

9.7 Write the parametric equations for each of the line segments whose endpoints are
given, and find the point of intersection (if any) between each pair of line segments.
a Linelipp=12,46,pr=46 —49
Line2Z: pp= (.0 1), p1 = (6,8 —06)

b. Linel:py= (2,4, 6),p1 =4 6, —4)
Line 2: pp = 4, 3,5), p1 = (25,45, 3.5)

¢ Linelipp=@2,46)Lp1=(46 —4)
Line2:po=(3.5 1, p1 =02, 16)

d. Line 1: po = (10, 8,0), p1 = (-1, -1, 0)
Line2: pp = (13,2, 0), p1 = (4,7, 0)

e Linelipp=600,p=200
Line2:pp = (80,0), p1 =(10,0,0)



